S3 method to compute AIC (Akaike Information Criterion).
Arguments
- object
output of
lifelihood()
- ...
Ignored
- k
Number of estimated parameter of the modèle. Default to
length(coef(object))
.
Examples
library(lifelihood)
library(tidyverse)
#> ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
#> ✔ dplyr 1.1.4 ✔ readr 2.1.5
#> ✔ forcats 1.0.0 ✔ stringr 1.5.1
#> ✔ ggplot2 3.5.2 ✔ tibble 3.3.0
#> ✔ lubridate 1.9.4 ✔ tidyr 1.3.1
#> ✔ purrr 1.0.4
#> ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
#> ✖ dplyr::filter() masks stats::filter()
#> ✖ dplyr::lag() masks stats::lag()
#> ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
df <- lifelihood::fakesample |>
mutate(
type = as.factor(type),
geno = as.factor(geno)
)
clutchs <- c(
"clutch_start1", "clutch_end1", "clutch_size1",
"clutch_start2", "clutch_end2", "clutch_size2"
)
dataLFH <- lifelihoodData(
df = df,
sex = "sex",
sex_start = "sex_start",
sex_end = "sex_end",
maturity_start = "mat_start",
maturity_end = "mat_end",
clutchs = clutchs,
death_start = "death_start",
death_end = "death_end",
covariates = c("geno", "type"),
model_specs = c("gam", "lgn", "wei")
)
results <- lifelihood(
lifelihoodData = dataLFH,
path_config = get_config_path("config"),
seeds = c(1, 2, 3, 4),
raise_estimation_warning = FALSE
)
AIC(results)
#> [1] 1760.116